仕事関数:半導体デバイスの性能を左右する鍵。
Atom energy icon on gray background, round shadow. Vector illustration. 私たちの身の回りにある電子機器や材料の多くは、その表面で起こる微細な電子の動きによって機能しています。その電子の動きを理解し、制御するために不可欠な
Atom energy icon on gray background, round shadow. Vector illustration. 私たちの身の回りにある電子機器や材料の多くは、その表面で起こる微細な電子の動きによって機能しています。その電子の動きを理解し、制御するために不可欠な
光電子顕微鏡(Photoemission Electron Microscopy:PEEM)は、材料研究において重要な役割を担う顕微分光技術の一つです。 放射光を励起光源として用いることで、試料表面から放出される光電子の空間分布を、100nm以下の高い空間分解能で直接的に可視化するこ
Color Drawing of Albert Einstein 光電子(こうでんし:photoelectron)とは、光電効果によって物質から放出される電子のことです。 光電効果とは、金属などの物質に光を照射した際に、電子が飛び出してくる現象です。この飛び出してくる電子を「光電子」と
金属は電気を通しやすく、ゴムは電気を通しにくい。 この違いを生み出す原因の一つが「伝導帯」です。 伝導帯とは、電子が自由に動き回れる場所のこと。 電子が伝導帯にいることで、電気が流れる仕組みを理解することができます。 この記事では、伝導帯の基本から、価電子帯
著者:ラース・ヘルダール博士/ Kagaku-analys AB ( 菅製作所 欧州代理店) 2024年11 月 6 ~8 日にフランス、トゥールーズで開催された会議についてのコメントと所見をレポートします。私たちは、本会議において菅製作所と共同でスポンサーとして参加しており、菅製作所のSP
私たちは、電気の力なしに生活することはできません。 しかし、電気とは一体何なのでしょうか? 電気を理解する上で欠かせない概念の一つが、「電気抵抗」です。 電気抵抗は、電流の流れにくさを表すもので、私たちの身の回りの様々な電気製品に利用されています。 この記事では、電
スマートフォンを充電する時、あなたはなぜコンセントにコードを繋げるとすぐに充電が始まるのか考えたことはありますか? その仕組みを支えているのは、実は目に見えない小さな粒子の働きなのです。それが、自由電子と呼ばれるものです。 自由電子は、原子核に束縛されずに、金属の中を自由に動き
ダイヤモンドと半導体。 一見すると、まったく関係のなさそうな組み合わせです。 実は両者に共通するものがあります。それは、「単結晶」という化学構造です。 想像してみてください。レゴブロックを積み上げて、大きな建物を作るとき、ブロックを規則正しく並べますよね。これと同じように
私たちの身の回りにある多くの製品には、目に見えないほど薄い膜が施されています。 この薄膜を作る技術を「成膜」といいます。スマートフォンやパソコンのディスプレイ、自動車のボディなど、様々な製品に利用されている成膜について、詳しく解説していきます。 ナノメートルオーダーの薄膜を基板上に形成
スマートフォンは、現代社会においてなくてはならない存在となりました。その内部には、数多くの小さな半導体が組み込まれており、高度な機能を実現しています。 かつてはパソコンが半導体技術の発展を牽引していましたが、近年はスマートフォンの普及に伴い、より小型で高性能な半導体チップの開発競争が
スマートフォンで手軽に世界中の情報にアクセスしたり、AIスピーカーに話しかけて様々なことをお願いしたり、自動運転車が街中を走る時代になりました。 これらの技術の根底を支えているのが、半導体チップという小さな部品です。 半導体チップは、シリコンなどの半導体材料を基盤とし、微細な回
コーティング加工は製品の機能性を高めたり、機能を長く保持させたりする役割を持っています。製品の外側・内側には多くのコーティング技術が使われています。そのなかの代表例が「蒸着」です。 この記事では、スパッタ装置をはじめとする成膜装置を製作する菅製作所が、成膜の基本である「蒸着」の基本的
© 2025 Suga All Rights Reserved.