バイポーラトランジスタとは?仕組みや特徴、MOSFETとの違いをわかりやすく解説
「トランジスタ」という言葉は聞いたことがあっても、それがどんなものか、どんな役割を果たしているのか、詳しく知っている人は少ないかもしれません。 トランジスタは、私たちの身の回りにある様々な電子機器に欠かせない部品であり、その中でもバイポーラトランジスタは、増幅作用とスイッチング作用と
「トランジスタ」という言葉は聞いたことがあっても、それがどんなものか、どんな役割を果たしているのか、詳しく知っている人は少ないかもしれません。 トランジスタは、私たちの身の回りにある様々な電子機器に欠かせない部品であり、その中でもバイポーラトランジスタは、増幅作用とスイッチング作用と
金属は電気を通しやすく、ゴムは電気を通しにくい。 この違いを生み出す原因の一つが「伝導帯」です。 伝導帯とは、電子が自由に動き回れる場所のこと。 電子が伝導帯にいることで、電気が流れる仕組みを理解することができます。 この記事では、伝導帯の基本から、価電子帯
著者:ラース・ヘルダール博士/ Kagaku-analys AB ( 菅製作所 欧州代理店) 2024年11 月 6 ~8 日にフランス、トゥールーズで開催された会議についてのコメントと所見をレポートします。私たちは、本会議において菅製作所と共同でスポンサーとして参加しており、菅製作所のSP
私たちは、電気の力なしに生活することはできません。 しかし、電気とは一体何なのでしょうか? 電気を理解する上で欠かせない概念の一つが、「電気抵抗」です。 電気抵抗は、電流の流れにくさを表すもので、私たちの身の回りの様々な電気製品に利用されています。 この記事では、電
半導体は、その電気伝導率が導体と絶縁体の中間にある物質として知られています。中でも、真性半導体は純粋な半導体であり、不純物を一切含まないことが特徴です。 しかし、電子機器に利用するためには、この真性半導体に手を加える必要があります。そこで登場するのが、不純物を意図的に添加した不純物半
スマートフォンを充電する時、あなたはなぜコンセントにコードを繋げるとすぐに充電が始まるのか考えたことはありますか? その仕組みを支えているのは、実は目に見えない小さな粒子の働きなのです。それが、自由電子と呼ばれるものです。 自由電子は、原子核に束縛されずに、金属の中を自由に動き
スマートフォンの中に広がる、ミクロの世界を想像してみてください。 そこには、無数のトランジスタや回路がぎっしりと詰まっています。 これらの部品は、「シリコンウエハー」と呼ばれる薄い板の上に作られています。まるで、絵画のキャンバスのように、シリコンウエハーは、半導体回路を描くため
ダイヤモンドと半導体。 一見すると、まったく関係のなさそうな組み合わせです。 実は両者に共通するものがあります。それは、「単結晶」という化学構造です。 想像してみてください。レゴブロックを積み上げて、大きな建物を作るとき、ブロックを規則正しく並べますよね。これと同じように
有機半導体とは、簡単に言うと、プラスチックのように柔らかい有機物でできている半導体のことです。 従来の半導体に使われているシリコンなどの無機物とは異なり、炭素を主成分とする有機化合物で作られています。 有機半導体の大きな特徴は、その柔軟性です。 薄く、軽く、曲げることがで
その昔、パソコンの容量はほんのわずかで、映画を1本保存するのも大変でした。 それが今では、スマートフォン一つに何千本もの映画を保存できるようになりました。これは、半導体という小さなチップの中に、膨大な情報を詰め込めるようになったからです。 インテルの共同創業者であるゴードン
私たちの身の回りにある多くの製品には、目に見えないほど薄い膜が施されています。 この薄膜を作る技術を「成膜」といいます。スマートフォンやパソコンのディスプレイ、自動車のボディなど、様々な製品に利用されている成膜について、詳しく解説していきます。 ナノメートルオーダーの薄膜を基板上に形成
光は、私たちの身の回りで当たり前のように存在するものです。 しかし、その光には、私たちが普段意識することのない、不思議な性質が隠されています。それが「干渉」という現象です。 波のように振る舞う光が、互いに重なり合うときに起こる「干渉」は、私たちの生活を支える様々な技術の基礎とな
© 2025 Suga All Rights Reserved.